Search for the Permian-Triassic boundary in central Peninsular Malaysia: Preliminary report

Masatoshi Sone
Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
Email: masatoshi.sone@gmail.com

Ian Metcalfe
School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia

Mohd Shafeea Leman
Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

The Permian–Triassic boundary (PTB), despite decades of searching, has not been located precisely to date in Malaysia. We are currently focusing our search for the PTB in central Peninsular Malaysia as part of our contribution to the geological heritage scheme launched by the National University of Malaysia (Universiti Kebangsaan Malaysia) and as a contribution to the new IGCP 572 Project “Restoration of marine ecosystems following the Permian–Triassic mass extinction: Lessons for the present”.

In central Peninsular Malaysia, there are several limestone karst hills which have yielded data indicating the possible presence of the PTB. Among them, Gua Bama has now emerged as the most prospective site, as it displays strata ranging from Upper Permian to Triassic. Its lithofacies is a thickly to massively bedded succession of limestones, with occasional tuffaceous layers.

Upper Permian colaniellid foraminifers are known from the base of Gua Bama (Lim and Abdullah, 1994). The Triassic nautiloid *Sibyllonautilus bamaensis* was recently reported from the top of the hill, confirming the presence of the Triassic (Sone et al., 2004). Thus, the Gua Bama limestone hill must include the Permian-Triassic transition. The nautiloid-bearing deposit includes abundant sponges and algae, which are extremely rare in the Early Triassic in general, and therefore we consider the uppermost part of the Gua Bama strata to be most likely Middle Triassic in age.

In addition to foraminifera, conodonts, brachiopods, and corals have recently been discovered from the basal part of Gua Bama. The conodonts include *Hindeodus typicalis* (Sweet), which is known to straddle the PTB, ranging from the upper Changhsingian through to the lower Induan (Lower Triassic) (e.g. Jiang et al., 2007; Yin et al., 2001) and gondolellids that indicate a probable Changhsingian age. The brachiopods include *Dongpanoproductus*, known elsewhere only from the upper Changhsingian of South China (He et al., 2005). We therefore interpret the lowest part of Gua Bama to most likely be of late Changhsingian age. This implies that the PTB is located some short distance above the conodont-brachiopod horizons. We are currently carrying out additional bed-by-bed systematic sampling and anticipate locating the PTB at Gua Bama in the near future.

At the base of Gua Bama, passage beds from the underlying shale (which extends down to the so-called Lyttoniid Shales of Muir-Wood, 1948) to the Gua Bama limestone are exposed (Leman, 1995; Sone et al., 2004). The shales often yield abundant brachiopods, which may include more than one fauna and were collectively interpreted to possibly range from Roadian to Wuchiapingian in age (Campi et al., 2002). However, our new biostratigraphic data from the lower part of Gua Bama implies that some brachiopod-bearing shales nearby Gua Bama may be as young as Changhsingian in age.

In addition, another limestone hill, Gua Sei located about 3 km east of Gua Bama, yields the conodonts *Isarcicella isarcica* and *Hindeodus parvus*, indicative of a basal Triassic age (Metcalfe, 1995). So far, it is uncertain whether the PTB is also present in Gua Sei. However, Paleozoic productoid brachiopods previously reported from Gua Sei imply the presence of the PTB. Our recent field survey in Gua Sei confirms that there are some

![Fig. 1. Correlation chart between Gua Bama and Gua Sei (modified from Sone et al., 2004). PTB isotopic age from Mundil et al. (2004).](image)

Fig. 1. Correlation chart between Gua Bama and Gua Sei (modified from Sone et al., 2004). PTB isotopic age from Mundil et al. (2004).
strata continuing below the conodont horizons, which may extend down into the Permian.

Furthermore, approximately 25–30 km east of Gua Bama and Gua Sei, there is another limestone unit called the Kenong limestone, which consists of some six major hills. As a whole, it also demonstrates a stratigraphic range from Wuchiapingian to Anisian (Middle Triassic) (Fontaine et al., 1994), yet the exact locality for the PTB is not known. All Gua Bama, Gua Sei, and Kenong limestones constitute parts of the same carbonate platform of the Late Permian–Triassic, which developed over a shallow-water basin of the East Malaya Terrane with Cathaysian affinity.

We are currently seeking co-researchers to undertake radiocarbon dating (zircon U-Pb) of tuff layers close to the PTB and stable carbon and other isotopic analyses of carbonates for episodic environmental change across the PTB. We would appreciate hearing from any potential collaborators.

References


SUBMISSION GUIDELINES

FOR ISSUE 51

It is best to submit manuscripts as attachments to E-mail messages. Please send messages and manuscripts to my E-mail addresses; hard copies by regular mail do not need to be sent unless requested. Please only send a single version by E-mail or in the mail; if you discover corrections before the deadline, then you may resubmit, but indicate the file name of the previous version that should be deleted. Manuscripts may also be sent to the address below on diskettes prepared with a recent version of WordPerfect or Microsoft Word; printed hard copies should accompany the diskettes. Word processing files should have no personalized fonts or other code and should be prepared in single column format. Specific and generic names should be italicized. Please refer to Issue #46 of Permophiles (e.g. Nurgalieva et al.) for reference style, format, etc. Maps and other illustrations are acceptable in tiff, jpeg, eps, bitmap format or as CorelDraw or Adobe Illustrator files. The preferred formats for Adobe Pagemaker are Microsoft Word documents and bitmap images. We use Times Roman 12 pt. bold for title and author and 10 pt. (regular) for addresses and text (you should too!). Please provide your E-mail addresses in your affiliation. Indents for paragraphs are 0.20 inch; do not use your spacebar. Word processing documents may include figures embedded at the end of the text, but these figures should also be attached as separate attachments as bitmaps or as CorelDraw or Adobe Illustrator files. Do not include figure captions as part of the image; include the captions as a separate section within the text portion of the document. If only hard copies are sent, these must be camera-ready, i.e., clean copies, ready for publication. Typewritten contributions are no longer acceptable. All the contributors must provide electronic versions of your text and electronic or camera-ready hard copies of figures.

Please note that we prefer not to publish articles with names of new taxa in Permophiles. Readers are asked to refer the rules of the ICZN. All manuscripts will be edited for consistent use of English only.

I currently use a Windows 2000 PC with Corel Draw 12, Adobe Page Maker 7.0, Adobe Photoshop 7 and Microsoft Office programs; documents compatible with these specifications will be easiest to work with.

E-mail: szshen@nigpas.ac.cn

shen_shuzhong@yahoo.com

Mailing address: Professor Shuzhong Shen

Nanjing Institute of Geology and Palaeontology

39 East Beijing Road, Nanjing, Jiangsu

210008, China

Submission Deadline for Issue 51
is Wednesday, December 31, 2008